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Thermal convection in a saturated porous medium contained between two undulating 
fixed boundaries of mean horizontal disposition is considered when the layer is heated 
from below. In  an analytic study, the amplitudes of the two-dimensional undulations 
are assumed to be small compared with the mean depth, and the wavelength is taken 
to be close to the critical wavelength for the onset of Lapwood convection. For values 
of the mean Darcy-Rayleigh number Ra below the Lapwood critical value Ra, an 
analytical formula is found for the mean Nusselt number. As Ra+ Ra,, convection 
driven by baroclinic effects induced by boundary variations is greatly amplified by 
convective instabilities. The natures of the resultant bifurcations are examined when 
the configuration is varicose and also non-varicose. Consideration is given to both 
longitudinal and transverse modes and to the effects of detuning. The effects of finite 
amplitude and larger Rayleigh number are examined, for the varicose configuration, 
in a numerical study of two-dimensional convection. Periodic solutions are found and 
the existence of the flows delimited in the parameter space of Ra and the boundary 
amplitude a. 

1. Introduction 
The phenomenon of buoyancy-induced flow and heat transfer though a saturated 

porous medium has attracted considerable attention over the last twenty years. This 
interest in thermal convection through porous media has been stimulated in two ways. 
First, there are diverse applications in, for example, chemical engineering, geothermal 
energy and hydrocarbon reservoir modelling, thermal-insulation engineering, and 
such geophysical phenomena as frost heave. Secondly, the problem provides a 
relatively simple test-bed for the development of analytical and numerical techniques 
for studying thermal instability, bifurcation and transition to turbulence in a 
Newtonian fluid. Moreover, porous media also provide a convenient means of 
studying experimentally such phenomena as cell-pattern selection and hysteresis. 

The present study is aimed at examining the geometrical effects of two-dimensional 
spatially periodic boundary variations upon the Lapwood problem (i.e. an unstably 
stratified Boussinesq fluid saturating a porous medium bounded between two smooth, 
horizontal boundaries of in6nite extent with constant, but unequal temperatures) .The 
motivation for initiating this study was geophysical, namely the application to 
convection within a Saturated porous medium such as a folded rock stratum. In the 
context of geophysical applications, the assumption of isothermal boundaries, i.e. 
perfectly conducting boundaries, must be questionable. Indeed recent work by Riahi 
(1983) does address itself to the problem of porous layers with finite conducting 
boundaries. In this paper, however, we choose to simplify the problem by confining 



504 D.  A .  S. Rees and D. S. Riley 

our attention to the perfectly conducting case. Nevertheless, it is not our intention 
to consider a particular application of our results. 

The onset of convection in a plane horizontal porous layer was first investigated 
using linear stability theory by Lapwood (1948). Subsequently, Palm, Weber & 
Kvernvold (1972) employed weakly nonlinear theory to investigate moderately 
supercritical flow, while Straus (1974) used spectral methods to further extend the 
results. Palm et al. reported, and the results of Straus confirmed, that two-dimensional 
motion is the only stable mode for moderately supercritical Rayleigh numbers in the 
Lapwood problem. It is natural therefore that we concentrate on two-dimensional 
modes - this is the spirit in which most thermal-convection studies are undertaken, 
especially in problems involving imperfections. 

Other literature directly related to this problem is generally concerned with 
convection of Newtonian fluids in horizontal slots, rather than saturated porous 
media. Watson & Poots (1971) seem to be the first to have studied the effect of 
boundary variations on free convection. Their study of convection in a vertical slot 
was motivated by an interest in optimizing the heat transfer from wavy-walled 
boilers. Vozovoi & Nepomnyaschii (1974), Tavantzis, Reiss & Matkowsky (1978), and 
Kelly 6 Pal (1976,1978), Pal & Kelly (1978,1979) have variously described the effects 
of periodic, small-amplitude boundary non-uniformities in either the temperature or 
location. On the other hand Eagles (1980) and Walton (1982a, b )  have considered 
similar non-uniformities which are also slow, i.e. occur over a long scale. Of all these 
references, Kelly & Pal (1978) is the most pertinent. 

In  our analytical work, the amplitudes of the boundary variations are taken to be 
O(S),  where S < 1 ,  and expansions are made in terms of S. The wavenumber of the 
periodic variations of both boundaries is assumed to lie close or equal to the critical 
wavenumber (k, = in) characteristic of the classical Lapwood problem and so, as in 
Kelly & Pal (1978), the problem generally involves resonant wavelength excitation. 

In the Lapwood problem no steady convection is possible until the Rayleigh 
number Ra is greater than the critical value Ra, = n2 for linear stability. When there 
are boundary variations, however, fluid motion always occurs, whatever the non-zero 
value of the Rayleigh number, due to the barocliniceffect. In $ 3 the ' quasi-conduction ' 
regime, wherein Ra < Ra, and the convection has amplitude O(S),  is analysed and 
asymptotic expansions found for the stream function, the temperature and hence the 
Nusselt number. For a configuration which is not exactly varicose, these expansions 
become singular as Ra+ Ra, - and a rescaling is necessary which balances the 
growing amplitude of 0(6/(Ra-RaC))  with the amplitude of the motion due to the 
classical Lapwood convective instability of O((Ra- Ra,):) ; this is considered in $4. 
In $4.1 two-dimensional flow is studied and a governing cubic equation found for the 
amplitude of convection. This equation yields three supercritical states but only the 
mode connected to the subcritical state is found to be stable. In $4.2 a three-dimensional 
formulation is introduced and a study made of the interaction between longitudinal 
and transverse rolls, together with the effect of a small detuning of the boundary 
wavenumber from k,. It is found that there is no purely transverse mode, but there 
are three situations depending on the detuning, in which purely longitudinal and 
mixed modes coexist. 

If the configuration is varicose, the expansions of $ 3  remain regular, but there is 
a supercritical bifurcation near Ra = Ra,; this is analysed in $5. In $5.1 two- 
dimensional motion is considered and the shift in the critical Rayleigh number due 
to boundary non-uniformities calculated. It is found that two modes bifurcate near 
Ra = Ra, ; one, termed type I, stable in the infinite layer and the other, termed type 
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11, stable, for example, in an infinite cylinder. I n  $5.2 the interactions between 
longitudinal and transverse rolls with amplitudes O(6) are studied. I n  this case, a 
stable purely transverse mode is first to bifurcate. There is also a purely longitudinal 
mode which is unstable until i t  suffers a secondary bifurcation to  an unstable mixed 
mode. 

Finally in $6, a numerical study is presented of the varicose case for finite boundary 
amplitudes and for Rayleigh numbers up to  40. It is found that there exist two 
distinct modes of two-dimensional flow, one of which is fluctuating, the other being 
steady and consisting of either two or four cells. 

2. Formulation of the problem 
We consider an  undulating porous layer, of mean vertical depth 2d and of infinite 

horizontal extent, saturated with fluid. The mean disposition of the layer is horizontal 
and we use a Cartesian coordinate system with 2 vertical and 2 in the horizontal 
direction of the boundary variation. The upper and lower boundaries are taken to 
be impermeable and isothermal a t  temperatures T, and T,(T, < T,) respectively, 
which yield a natural characteristic temperature scale AT = f(T, - T,). Other variables 
are non-dimensionalized with respect to length, velocity, pressure and time scales 
given by d ,  A , / (p fc ,d ) ,  vA,/(Kc,) and pmcmd2/Am respectively. Here A,, p,, c ,  are 
the thermal conductivity, density and specific heat of the saturated porous medium; 
v and cf are the kinematic viscosity and specific heat of the saturating fluid, which 
has a reference density p f .  Then, on assuming that the Prandtl-Darcy number is large 
and invoking the Boussinesq approximation, the non-dimensionalized Darcy- 
Boussinesq equations become : 

q = -Wp+RaBL, (2.1) 

v-q = 0, (2 .2)  

where q is the Darcy velocity vector, p the pressure and 0 is the temperature. 
Ra = /3gKATdpf c f / vA ,  is the Rayleigh number with /3 the coefficient of cubical 
expansion of the saturating fluid, K the permeability and g the acceleration due to 
gravity . 

The boundary conditions needed to complete the specification of the problem are 

q - n  = 0, 8 = - 1 (upper boundary), (2 .4 )  

q * n  = 0, 8 = + 1 (lower boundary), (2 .5 )  

where n denotes the normal to the boundary. I n  addition we assume that there is 
zero net horizontal volumetric flux. 

3. Quasi-conduction regime 
It is easily shown that small-amplitude steady solutions yield the critical Rayleigh 

number Ra, above which non-decaying solutions exist for the full non-linear Lapwood 
problem (Beck 1972). Thus by continuity, we expect that  for Ra sufficiently below 
Ra, the flow between small-amplitude wavy boundaries is unique, stable and, since 
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the flow arises owing to the non-uniformities of the boundaries, two-dimensional. 
Thus on introducing a stream function $ such that q = curl ($y),  we have 

V2$ = Rae,, (3.1) 

v2e = J($ ,  e) +e,, (3.2) 
with 

on z = 1 +6g,(x), 
$ = O  e = - 1  I 

on z = - 1 --Sg,(x). 
$ = O I  e = i  

Here V2 denotes the two-dimensional Laplacian in x and z, 

(3.3) 

(3.4) 

and g,(s), g,(x) denote the shape functions of the upper and lower boundaries 
respectively. We take 

(3.6) g,(z) = a, cos (kx-b), g1(x) = a, cos ( k X + b ) ,  

where 2P is the phase difference between the two wavy boundaries, and a,, al are 
amplitude measures for the respective boundaries. 

It is convenient at  this stage to introduce new independent variables 6 and 7 such 
that 

which transform the upper and lower boundaries to 7 = f 1. 
Equations (3.1), (3.2) become 

Ll$ = RaL28,  (3.8) 

ae 
L1e = 2 9 , ~ ( $ ,  e)+s;-, 

at 
where 

(3.9) 

with 

/ 
82 = (1-7)g;-(1+7)g;. 

On assuming that 6 -4 1 and that Ru is sufficiently below Ra, (to be made more precise 
later) we look for steady-state solutions and expand : 

( 3 . 1 0 ~ )  

(3. lob) 

$(L 7) = W l ( E 9  7) + W 2 ( 6 ,  7) + * * * ,  

M 7) = -7+ae,(g, 7) + m , ( g ,  7)+ ... . 
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The O( 1)  terms constitute the pure-conduction solution, whilst the O(S) terms satisfy 

V2$l - Ra 016 = !jRa k [ (  1 - 7) a, sin ( k [ +  /3) - (1  + 7) a, sin ( k t - p ) ] ,  (3.11 a) 

V28, + $ls = -+kz[( 1 - 7) a, cos (kg + p) + ( 1  + 7) a, cos ( k g - p ) ] ,  (3.1 1 b)  

with $, = 8, = 0 on 7 = f. 1. These equations are readily solved : 

$1 = a,f1(7) sin (kE+B)+a,f2(7) sin (k5-/% 

81 = algl(7) cos(kE+B)+a,g2(7) cos (kE-B), 

( 3 . 1 2 ~ )  

(3.12b) 
where 

Here x, which may be real or imaginary, and y are given by 

y2 = ka+kRai, x2 = k2-kRai, (3.14a, b )  

with x = y = k when Ra = 0. 
These solutions are valid for all wall wavenumbers k ,  but in general become singular 

in the limit coshx+O. Using (3.14), we see that for a given wavenumber k this 
behaviour first occurs as Ra+W,, where 

(k2 + iXn")2 

k2 ' 
9, = (3.15) 

which is precisely the expression for the neutral stability curve in the Lapwood 
problem. This type of behaviour was first noted by Watson & Poots (1971) and again 
later by Kelly & Pal (1976). Thus as Ra-tRa, with k - k,, (3.10a, b) break down 
and new expansions must be determined. For the BQnard problem, this resonant case 
was simultaneously attacked by Tavantzis, Reiss & Matkowsky (1978) and Kelly & 
Pal (1976, 1978). 

When the layer is varicose, that is a, = a, = a, say, and /3 = 0 (see figure la ) ,  the 
first-order solution reduces to 

$, = !pRa+[ sinh (x7) -sinh (7711 sin (&) ,  
sinh (2) sinh ( y )  

sinh ( ~ 7 )  sinh (77) [ sinh(X) + sinh(y) 
e -b - 

(3. l ea)  

(3.16b) 

which remains bounded near the neutral stability curve. This was noted by Kelly 
& Pal (1978) but pursued no further; discussion of this special case is left until 95. 

In  figure 1,  we display the O(6) streamlines for Ra = 5, a, = 4, and various wall 
phases p. For the varicose configuration, B = 0, the flow consists of a set of four 
counter-rotating cells per wall wavelength, as expected from symmetry considerations. 
As shown, this pattern is quickly distorted by small deviations of /3 away from zero, 

17 FLY 166 
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FIGURE 1. The O(6) streamlines as calculated from equation ( 3 . 1 2 ~ )  for Ra = 5, a,, = a,, and wall 
phases (a )  0", ( b )  5", ( c )  lo", (d )  20", (e) 45", (f) 90". 

(4 (4 0 
FIGURE 2. The O(6) streamlines as calculated from equation ( 3 . 1 2 ~ )  for Ra = 5 ,  /3 = 0 and wall 
amplitudes (a )  a, = a,, ( b )  al = 0.75aU, (c) a, = 0.5a,,, (d) a, = O.25au, (e) a, = -0.25aU, (f) a, = -au. 

with pairs of cells coalescing as 181 increases. The sense of the flow is always such that 
it is up the hotter, lower boundary and down the cooler, upper boundary. 

Again from symmetry considerations, we expect a symmetrical two-cell pattern 
when /3 = 0 and a, = -al ,  i.e. for the sinuous case (see figure If). This is shown in 
figure 2 along with the effect of varying a, whilst holding a, fixed with = 0 and 
Ra = 5. 

The boundary non-uniformities may induce distortions a t  0(a2) to the mean values 
(i.e. averages over one boundary wavelength) of horizontal flow and heat transfer. 
Omitting all algebraic details, it is found that the mean flow is non-zero, except if 
,!I = 0 or n, or if one of the boundaries is flat, i.e. a, or al = 0. Of more importance, 
however, is the mean heat transfer. On using A, d /AT to  non-dimensionalize the local 
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Ra 

FIGURE 3. The second-order Nusselt numbers (from equation (3.18)) fork = k,. 

conductive heat transfer from the lower boundary, the mean Nusselt number % is 
given by (cf. Watson & Poots): 

(3.17) 

It is found that 

Nu = - l + + [ ( ~ + a ~ + 2 a l a ,  COS2/3)Nu, 

+ (a,” + a: - 2 ~ 1  a, cos 2p) Nus]  + 0(6~), (3.18 a)  
where 

- 
+Coth2X-COth2Y -&[x cothX+y cothy], 

(3.18 b) 

coth (y) coth (x) NU, =- 
X 

- 
+tanh2X-tanh2y -&[x tanhX+y tanhy]. 

(3.18~) 
1 Nu,=- 

X 

Here the heat transfer has been conveniently factored into varicose (al = a,, = 0) 
and sinuous (al = -au, = 0) contributions. Nuv and Nus are plotted in figure 3 and 
we note that they are always negative. Thus, since the coefficients of %, and Nu, 
in (3 .18~)  are non-negative, we conclude that the induced convection enhances the 
boundary heat transfer. 

4. The critical regime for the non-varicose configuration 
4.1. Two-dimensional 

We follow Kelly & Pal (1978) and consider flow in a non-varicose layer with k = k, 
and Ra N Ra,. According to Palm et al. (1972), two-dimensional motion is the only 
stable mode for moderately supercritical Rayleigh numbers in ordinary Lapwood 
convection. It is feasible that this result carries over to the present case when the 
boundary non-uniformities are infinitesimally small. The orientation of the rolls, 
however, is not obvious. It is plausible that the rolls will be longitudinal (i.e. with 
generators in the y-direction) and we first investigate this case. 

17-2 
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The scalings appropriate to this type of problem have been fully discussed by 
Tavantzis et al. (1978) using matched asymptotic expansions, and by Kelly & Pal 
using heuristic reasoning. We initially consider steady solutions and take 

@ = d !Pi+& !Pi+SY1+ ... , (4.1 a )  

e = -7+ doi+de,+ss,+ ... , 
and 

(4.1 b)  

RU = RaC+dRai+ ... . ( 4 . 1 ~ )  

The problem a t  order d and d are equivalent to the first- and second-order problems 
considered by Palm et al. in their study of supercritical convection in a porous 
medium. Omitting the detailed analysis, we have 

!Pi = - 2k, A cos (k, 5 + a) cos k, 7, ( 4 . 2 ~ )  

8: = Asin(k,f+a) cosk,r, (4.2b) 

!Pi E 0, 8g = aA2kc sin2kC7, (4.3u, b) 

where the amplitude A and phase a are to be determined. The equations for Y, and 
8, are then 

V2 Y, - Ra, 8,, = iRac k,[( 1 - 7) a, sin (k, f + /3) - (1  + 7) a, sin (k, 6-/3)] 
+k,RaiAcos(k,E+a) cosk,T, ( 4 . 4 ~ )  

+!jk4, A3 s i n ( k , ~ + a ) [ c o s k c ~ + c o s 3 k c q ] ,  (4.4b) 

which must be solved subject to the vanishing of Y, and 8, on 7 = & 1. If ( 4 . 4 ~ )  is 
multiplied by Yl/Ra,, (4.4b) by 8: and the resulting equations added and integrated 
over a wavelen&h in the f-direction and between - 1 and + 1 in the 7-direction, the 
following solvability condition results : 

V2@, + = -?$: [( 1-7) a1 cos (k, 5+/3)- (1 + 7) a, cos (k, f-/3)] 

k4,A3-RaiA-2k,c3 = 0, (4 .54 

where G is the real root of 

c3 = [a, sin(a+/3)-al sin(a-/3)]. (4.5b) 

We interpret ( 4 . 5 ~ )  as defining A in terms of Rai. As shown in figure 4, for Ra! > 3k: ca 
there are three possible solutions to ( 4 . 5 ~ ) .  As Rag+ GO, A/G - f [Rai/(k$ c2)$ on the 
upper and lower branches respectively, whilst A/c - - 2kE c2/Rai on the middle 
branch. 

We now turn to the questions of the preferred convective phase a and the relative 
stability of the three supercritical solutions. In order to  address these questions we 
must allow for a slow time dependence in the amplitude A and phase a. Thus we 
introduce a slow timescale T = dt into (3.9). The existence of solutions to the O(6) 
equations requires that 

- -$k~A3-ARui+2k,[al sin(a-/3)-aU sin(a+/3)]} 
dA 
d7 
_-  ( 4 . 6 ~ )  

da 
dT A 
_ _  - --{al kc cos(a-/3)-a, cos(a+/3)}. (4.6b) 
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F’IQURE 4. The imperfect bifurcation for the general undulating layer (equation 4.5) : -, stable 
solution; ---------, unstable solutions; ------, the perfect bifurcation, for reference. 

Here (4.6~) follows in the same way as (4.5a), whilst (4.6b) follows by applying the 
same procedure as for (4.6~) but using eigensolutions !Pi and t34 with phase a+iz 
rather than a in the [-direction. The equilibrium phase up is determined by simply 
taking da/dr = 0, hence 

tana, = rfi) cotB. 
a,, + a1 

Denoting c by c ,  when a = ap in (4.5b) and setting a = a,+& in (4.6b) gives 

(4-7) 

from which we infer that the solutions along the lower branches are unstable to 
perturbations that are out of phase with themselves. A linear stability analysis of 
the upper-branch solutions shows that this branch is stable. 

Finally, the effects of detuning may be investigated. Letting 

k = k , ( l+&&)  (4.9) 

be the wall wavenumber and proceeding as above, we find that equation (4.6~) is 
replaced by 

Jkc  A3 + (Ra, Is - Rai) A + 2kc(al sin (a - B) - a,, sin (a + B) )] dA -=-l 4 
dr  

(4.10) 

and all the above observations regarding stability remain valid. 

4.2. Three-dimensional 
In other situations, it is known that (i) longitudinal rolls are generated before 
transverse rolls (Walton 1983)t and (ii) longitudinal rolls are unstable to disturbances 

t Walton’s definition of a transverse roll is equivalent to our longitudinal roll. 
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in the form of transverse rolls (Streus 1974). It is of interest therefore to investigate 
the interaction of longitudinal and transverse modes. 

Of course, we must abandon the stream-function description of the problem and 
adopt a full three-dimensional form. We have found it convenient to work in terms 
of the pressure. By taking the divergence of (2.1) and substituting for q from (2.1) 
into (2.3), we obtain 

V2p = Ra BZ, (4.11) 

(4.12) V26 = Ra 66, - Wp We + - , 
where V2 denotes the three-dimensional Laplacian in z, y, z. The boundaries are 
impermeable and isothermal, hence 

ae 
at 

(4.13) 

(4.14) 

where n denotes the normal to the wavy boundary. We recast these equations using 
new independent variables (6, [, 7), where (5, 7) are as defined in (3.7) and g = y: 

ae 
{Ll+s:&}p = 2Ras1-, a7 (4.15) 

k,+s:&}B= 2Ras 

with 

o n q =  1 
(2-62s2g~)--6s,g~-+Rasl aP aP = 0 

a7 36 
e = - 1  

( 4 . 1 7 ~ )  

(2+S2s2g;)-+6s,g aP --Ras, aP = 0 o n q = - l .  (4.17b) 

e = 1  

(4 .18~)  

(4.18b) 

(4 .18~)  

a7 

We expand 
p = -$ Racq2+dpt+$pi+ ... , 
e = -7+  &e;+f%e;+ ... , 

Ra = Rac+&+ ... , 
k = k c ( l + & E +  ...), (4.18dj 

where the leading-order terms in the p- and 6-expansions are the conduction-state 
distributions for plane boundaries. At O(d) we obtain the usual linear Lapwood 
equations, but recast due to the (p, 8)-formulation: 

(4 .19~)  

(4.19b) 
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with 

- = O ,  3P1 t j = O  o n T = + l .  (4.19~) 

We concentrate on the eigensolution representing a sum of longitudinal and transverse 
rolls. On expanding the eigensolution for small 6 and truncating at leading order, we 
have 

p;  = [2k, sin(kE+a) sink,q] AL+[2k, sink,[sink,y]AT, (4.20 a) 

(94 = [sin (kt+a) cos k, 71 A,+ [sink, 6 cos k,  71 AT, (4.20 3) 

where A,, AT denote the amplitudes of the longitudinal and transverse rolls 
respectively. A t  O(d), we obtain the solutions 

a7 

pi  = - ik: [At +A;] cos 2k, 7 - 2k, &AL cos ( k t  + a) sin k, 7 

f$ = ik, [At + A$] sin 2k, 7 +$k, A, AT sin ( k t + a )  sin k, 6 sin 2k, 7, 

-$q2 -3k: A, AT sin ( k t  + a) sin k, g cos 2k, 7, (4.21 a) 

(4.21 3) 

whilst the existence of a solution to the O(6) equations requires 

dA, = +(p-h2Ra,) A,-+k4, Ai-tk4, A,*$+ k,ci cosoc", (4 .22~)  

-- dAT - ?#AT-+k;Ag-$k:AEAT, (4.223) 

dr  

d7 

doc" 
d7 A, 
- = -- kc c i  sing. (4.22~) 

Here we have again set a = a,+oc", where ap is the equilibrium phase, given by (4.7). 
We now consider the stability of the upper branch of ( 4 . 5 ~ )  to cross-roll disturbances. 
On substituting (A,, A,, oc") = (A, 0,O) +(A;, A;, a') and linearizing, we obtain 

dA' 
dr 
-- - &u - I 2  Ra, - 3k; A2] A;, ( 4 .23~)  

-- dA' - ?j& - Yk4, A2] A;, (4.233) dr 

(4 .23~)  

For the stability of the upper-branch solutions, both terms in the square brackets 
in (4.23) must be negative. Hence the curve of marginal stability is given by 
p = yk: A2, which intersects the upper branch at the positive roots of 

&&- Ra, k2,d+ 2(?); k: c i  = 0. (4.24) 

The maximum detuning allowable in order that the whole of the upper branch be 
stable is easily determined to  be Emax, where 

(4 .25~)  

at which point 

Pmax = - lo k2 c2. 
(63)i (4.253) 
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FIGURE 5. A sketch of the longitudinal component of the mixed mode for the general undulating 
layer (equation 4.26) : -, stable solution ; ---------, unstable solution. 

We note that the pure A ,  mode is stable for high enough values of p, irrespectively 
of the degree of detuning within the O(d) range. 

The pure A ,  mode, however, is not the only equilibrium state: there exists a 
mixed-mode solution to (4.22) with AT =k 0. On eliminating AT, the longitudinal 
component A,, of the mixed mode satisfies 

(4.26) 

A sketch of A,, is displayed in figure 5. A stability analysis reveals that the upper 
and lower branches are both unstable, whilst the middle branch is stable. It should 
be emphasized that there is no pure AT mode solution to (4.23) and so transverse 
rolls cannot constitute the most unstable mode. 

By considering the condition for the existence of the transverse component of the 
mixed-mode (i.e. from (4.22b)), we deduce that the roots of (4.24) coincide.with the 
points where the A,, mode curve intersects the A ,  mode curve. The situation is 
illustrated qualitatively in figure 6 for various L. For the purposes of delineating the 
three possible regimes, we introduce the value Emin, via 

(4.27) 

which is the amount of detuning needed for the stable middle branch of the A,, mode 
to intersect the stable upper branch of the A ,  mode. For < I&,,,I, the whole of 
the upper branch of the A ,  mode is stable and there is also a stable mixed-mode 
solution which exists when p > ,k, where 

$ = (357)i k: c E - y z  Ra,. (4.28) 

For lLmaxl < lbl < lEminl there is a sub-interval in which the A ,  mode is unstable, 
whilst the mixed-mode is stable. Finally, when > IEminJ, there is a continuous 
transition from the A ,  mode to the mixed mode. 
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P 

FIGURE 6. An illustration of the three possible regimes for the stability and existence of longitudinal 
and mixed modes for the general undulating layer: -, stable solutions; --------- , unstable 
solutions. 

5. The critical regime for the varicose configuration 
We turn now to the special case mentioned in $3, namely the varicose configuration 

with al = a, = a and p = 0. In this case, expansion (3.10) remains regular near 
Ra = Rac but the solution that it represents becomes unstable. We have what 
Tavantzis et al. (1978) call a weak imperfection: the imperfection modifies, but does 
not alter the qualitative character of the bifurcation. 

We first determine the critical Rayleigh number for longitudinal rolls and then 
consider the interaction of longitudinal and transverse rolls. We shall see that, in 
contrast to the non-varicose case, transverse rolls are the first to appear but that at  
higher Rayleigh numbers both longitudinal rolls and transverse rolls are possible 
stable modes (at least to the types of disturbance considered here). 

5.1. Two-dimensional 
For k = k ,  and Ra - Ra,, we assume the double expansions 

c o o 3  

( $ 9  8, Ra) = X X Ernan($mn, e m n ,  Ram,), (5-1 1 
m - o  n - 0  

where E ,  the scale of the convection amplitude, is regarded as small and 

($007 8 0 0 ,  Raoo) = (0, -7, Rat). (5.2) 

As both 6 and Ra are externally imposed parameters, (5.1) actually defines E .  



516 D. A. S. Rees and D. S. Riley 

(4 (b) 
FIGURE 7. The streamlines (equation 5.3) of the two-dimensionally stable mildly supercritical roll 

solutions for the varicose layer: (a) a = nz (infinite layer); ( b )  a = ( n + i ) x  (infinite cylinder). 

From the work of Palm et al. on weakly nonlinear Lapwood convection, we deduce 
that Ra,, = 0, Ra,, = k4, and 

(@ol, O,,) = (-2k, cos(k,c+a) C O S ~ , ~ ,  sin(k,t+a) cosk ,~) ,  (5.3) 

where a is an arbitrary phase. After much tedious analytical work, we further find 
that Ra,, = Ra,, = 0 (as expected on symmetry considerations) and 

-- ]k4,+[-c0th2/3kc]k; 1 
Rao2 az - [ l + 4  sinh2 1/3 k, d3 

k3, cos2a. (5.4) 

As Ra,, is dependent on a, the preferred phase must be determined as in 84.1. 
Applying the solvability condition on the O(eS2) equations yields 

1 1 * = -L[k,-- coth1/3kC k3, sinza, 
d? 8 4 3  (5.5) 

where the term in square brackets is positive and ? = S2t. The preferred phases are 
given by a = nn for integer n, which correspond to rolls centred in the hollows and 
constrictions. These rolls have critical Rayleigh number 

Ra = Ra,+7.4142a262+0(64). (5.6) 

The other equilibrium solutions of (5.5), namely a = ( n + t ) n ,  are also of interest. 
For although they give rolls which are unstable in the infinite layer, they are stable 
when there is any vertical insulated barrier positioned symmetrically in the varicose 
undulations, i.e. at  6 = 2n, for some integer nl. The corresponding critical Rayleigh 
number for this case is 

Ra = Ra,+9.3796a2S2+0(64). (5.7) 

The two cases described above are illustrated in figure 7. For convenience we call 
the stable flow with a = nn, type I and that with a = (n+!j)n, type 11. 

The effects of detuning are such that the critipl Rayleigh numbers for type-I and 
-11 modes are both increased by an amount PI2 Ra,, when the wall wavenumber is 
k = k,( 1 + S i ) .  The conclusions regarding stability remain valid. 

5.2. Three-dimensional 
Here we consider the varicose analogue of 84.2. The governing equations are 
(4.15)-(4.17), where gu and g1 are given by (3.6) with k = k,, a, = al = a and /3 = 0. 
In order to incorporate the fully interactive three-dimensional case, we assume that 
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R., 
FIGURE 8. Sketch of the primary and secondary bifurcation for the varicose layer. 

(a) transverse rolls, (a) longitudinal rolls, (c) mixed mode. 

the convective rolls have amplitudes which are O(6).  Thus, for Ra - Ru,, we assume 
that 

where 

At 0(6) ,  we take 

= h(71) coskc5+2k,[~Lsin(kc.+a)+~Tsinkc~sinkc~, (5 .10~)  

Ol = d(7)  c o s k c ~ + [ ~ L s i n ( k , ~ + a ) + ~ T s i n k , 5 ] c o s k c ~ ,  (5.10b) 
where 

cosh 43kc 7 
h(7) = - 4kE - k, cos k ,  7 + 4 3 k ,  

sinh 4 3 k ,  ’ 

-271 
1 sinh 43k, 17 

d(7) = -[sink,q+ 2 sinh 43k, 

(5 .11~)  

(5.1 1 b)  

and AIL, AT denote the amplitudes of the longitudinal and transverse rollsrespectively. 
Again omitting all the details, it  is found that xul = 0 and 

( 5 . 1 2 ~ )  

(5.12b) 

where &aL is identical with Ra,, given by (5.4) and l?aT is found numerically to have 
the value -222.504~~; the equation for the phase a is again given by (5.5). A stability 
analysis shows that the longitudinal mode with a = (n+$)  x is unfitable, whilst the 
pure transverse mode is stable. For Bu, > fza, there is also a longitudinal mode with 
a = nx, which is unstable until it suffers a secondary bifurcation to an unstable mixed 
mode at  

fia, = i[lO&L-7&T], (5.13) 

see figure 8. For an infinite cylinder formed by inserting vertical insulated boundaries 
into the infinite varicose layer as described in $5.1, type I1 is the only possible 
longitudinal mode. Its bifurcation diagram has the same form as in figure 8, but with 
xuL having the appropriate value. 
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6. Numerical solution: varicose configuration 
Thus far, we have concentrated upon the stability of longitudinal and transverse 

rolls in a slightly undulating layer. The asymptotic solutions that we have found are 
valid for small boundary amplitudes and for Rayleigh numbers varying from zero 
to slightly supercritical, i.e. Ra 6 Ra,. In order to obtain two-dimensional solutions 
for finite wall amplitude and for larger Rayleigh numbers, we have made recourse to 
numerical techniques. 

The first numerical study of supercritical motion in the plane porous layer was made 
by Elder (1967), who calculated finite-difference solutions with which to compare his 
experimental results. Elder restricted his attention to two-dimensional roll solutions 
with wavenumber k,  ; stability with respect to three-dimensional disturbances was 
not considered. Straus (1974), using a Galerkin method, considered general distur- 
bances and showed that, at  a given value of the Rayleigh number, stable two- 
dimensional flow is possible for a finite band of horizontal wavenumbers provided 
that Rae 5 Ra 6 9.5RaC. 

Other literature related to the two-dimensional case is concerned with steady and 
unsteady convection in rectangular boxes: Horne & O’Sullivan (1974, 1978), 
Caltagirone (1975) and Schubert & Straus (1979, 1982). In these studies, the 
computational region fixes the range of possible wavenumbers. For unicellular 
convection with wavenumber k,, the flow is steady for Rayleigh numbers that are 
mildly supercritical, but eventually becomes oscillatory as the Rayleigh number 
increases. The critical value for the onset of this fluctuating motion has been variously 
reported to have a value ranging from about 7Ra, (Horne & O’Sullivan 1974) to about 
9.5RaC (Caltagirone 1975); see Horne (1979) and Schubert & Straus (1982) for 
interesting discussions. Moreover it appears that all two-dimensional multicellular 
patterns of convection become oscillatory with increasing Rayleigh number and the 
larger the number of cells is, the higher is the value of Ra a t  the onset of oscillatory 
behaviour (Schubert & Straus 1979). 

When the effects of boundary variations are included in the numerical analysis, 
we shall see that there is a stabilization to the convective instability and also that 
the flow becomes oscillatory at much lower Rayleigh numbers. We have found three 
distinct types of periodic motion depending upon the exact configuration and upon 
the boundary amplitude and Rayleigh number. 

We consider only two-dimensional convection in a varicose layer with k = k,, as 
this is a relatively simple but interesting case to study. The numerical study of Straus 
(1974) concerning the stability of rolls to three-dimensional disturbances in the 
Lapwood problem shows that rolls with wavenumber k,  are stable up to about 5Ra,. 
Whilst recognizing that the roll-stability region of Straus will be modified by the 
presence of boundary undulations, we expect that, if these undulations are small, 
there will be Rayleigh numbers for which stable longitudinal rolls are realizable 
physically. Furthermore, the stability analysis of $ 5  indicates that for large enough 
Rayleigh number both longitudinal and transverse rolls may exist and are stable. In 
view of figure 8, it seems more likely that transverse rolls will be observed. However, 
for a layer that is of finite extent in the y-direction, with vertical insulated boundaries 
that are not an integer multiple of the critical cell width (n /kc  = 2)  apart, we can 
show that stable longitudinal rolls appear at a lower Rayleigh number than 
transverse rolls. Geophysically this situation could occur where an undulating rock 
stratum is bounded by vertical faults. In view of this latter observation, we consider 
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a two-dimensional study not only to be a starting point for a full three-dimensional 
study, but also worthwhile in its own right. 

The governing nonlinear time-dependent equations (3.8), (3.9) with 13 = 1 and 
a, = a, = a were discretized using a uniform square grid. The solution domain 
consisted of one wavelength of the varicose layer or, equivalently, a 4 x 2 rectangle 
in the transformed (6 ,  q)-plane. The Dufort-Fraenkel scheme was used for the 
temporal and diffusion terms in (3.9), whilst a second-order Arakawa method (1966) 
was used for the advection terms. Roache (1972) points out that the conservation 
properties of the Arakawa scheme make it ideally suited to hydrodynamic stability 
problems. 

The stream-function equation (3.8) was discretized using second-order central- 
difference approximations. For a given temperature field, the resulting linear 
equations were solved by successive over-relaxation with an optimum relaxation 
parameter which varied little for the range of amplitudes considered. Due to the 
presence of single and mixed derivatives in the transformed Laplacian, the iteration 
matrix lacked diagonal dominance, but no consequential difficulties with convergence 
were experienced. To accelerate the convergence, a pointwise quadratic extrapolation 
procedure was employed to provide an initial iterate. On testing the program, it was 
found necessary to ensure high accuracy in the solution to (3.8) in order to avoid a 
time-splitting instability in the solution to (3.9). 

A grid of 41 x 21 points was used with a mesh length of 0.1. The time step varied 
between 0.0025 and 0.01 depending on whether the flow was steady or not, and on 
the Rayleigh number. Starting with either the conduction solution or a converged 
temperature field from a neighbouring parameter case, (3.8) was solved to determine 
a stream function $. This was then used in (3.9) and the temperature distribution 
updated. This process was iterated until a pointwise convergence criterion was 
satisfied by the stream function. 

Various checks were first made in order to verify the numerical procedure. First 
the Lapwood problem was considered. It was found that: 

(i) the critical Rayleigh number was 9.95, an error of less than 1 % ; 
(ii) the supercritical growth rate was almost exactly i(Ba-Ra,) ; 

(iii) the heat-transfer results were in good agreement with those of Elder (1967). 
The results of Straus (1974) are dependent on the roll wavenumbers, which were 
chosen to maximize the heat transfer at any given Rayleigh number, and in 
consequence they are in an inconvenient form for easy comparison. Secondly, the 
subcritical heat transfer for a = 0.1 was calculated and found to be in close agreement 
with that given by (3.18a, b) .  

We shall present numerical results for two cases, which are related to the type-I 
and type-I1 modes introduced in $5.1. The first type corresponds to stable flows in 
infinite layers, whilst the second corresponds to stable flows in, say, infinite cylinders. 
For type I flows the full 41 x 21 computational grid was used, whereas for type I1 
flows it was reduced to 21 x 21 by using symmetry about 6 = 0. 

As the amplitude increases from zero to some small finite value, the analyses of 
$3 and $5 should give accurate qualitative and quantitative predictions. This is 
confirmed by the numerical results. In  particular, for low Rayleigh numbers, the only 
flow that we could determine numerically was a weak convection consisting of four 
cells, which corresponds to the quasi-conduction flow discussed in $3. For higher 
Rayleigh numbers this flow became unstable and bifurcated supercritically into 
strongly convecting steady two-cell solutions, thus confirming the results in 85.1. In 
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FIQURE 9. The marginal stability curves for (a) the infinite layer (Is) and ( b )  the in ... iite cylinder 
(IIs), as determined by numerical experiment. Also shown are the respective boundaries I,, 11, 
between steady and periodic flows. 

figure 9, we have traced out the curves of marginal stability, labelled Is and II,, 
for type-I and -11 modes respectively. On using a non-negative functional f which 
filters out the motion due to the baroclinic effect : 

and 

where i = I or 11. Here Ru,(u), RaII(a) are the critical Rayleigh numbers and a,(Ra), 
a,,(Ra) the critical amplitudes corresponding to the curves I,, 11, respectively. The 
behaviours along I, and 11, as a --+ 0 + are 

Ra, - 9.95-k 8.5a2, (6.4) 

Ra,, - 9.95+ 9.6a2, (6.5) 

which may be compared with the analytical formulae (5.6) and (5.7). On using simple 
linear extrapolation, i t  seems that limaI+l- RuI = 15.3 (see figure 9a). It should be 
stressed, however, that our numerical method is not able to deal with the singular 
limit of upper and lower boundaries touching. 
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FIGURE 10. Comparison of the types-I and -11 solutions for selected Rayleigh numbers at a = 0.2. 
For each pair, the streamlines are on the left and the isotherms on the right - this convention applies 
also to figures 1 1 ,  17, 18 and 19. The streamlines and isotherms are drawn at equal intervals 
between their respective extrema. 

It is of interest to compare the type-I and -11 modes as the Rayleigh number 
increases, and these are shown in figure 10 where we have taken a = 0.2 as a typical 
amplitude. For the infinite layer (shown on the left in figure lo), the large cell in the 
hollow is always tilted due to the action of aiding buoyancy forces along one half of 
both boundaries and opposing forces on the other halves. This is in contrast to the 
Lapwood problem where the streamlines first distort near the centre of the layer as 
Ra increases (cf. Elder 1967, figure 5). This buoyancy-force action also affects the 
type-I1 flow (shown on the right in figure lo), but now produces a vertical asymmetry 
by opposing the motion along the upper boundary (as we have shown i t )  and aiding 
it on the lower. It should be noted that the solutions found by reflecting in q = 0 
those in figure 10 also satisfy (3.8) and (3.9) and are equally likely to occur. 

In figure 11 ,  we have shown, for a fixed Rayleigh number, the effects upon the 
modes of varying the boundary amplitude. As a increases, the strength of the flow 
decreases until Is or 11, is crossed, at which point the weakly convecting four cell 
solutions are re-established. This reappearance is not surprising in view of the 
increased baroclinic effect. A typical plot of the extreme values taken by the stream 
functions is shown in figure 12; the point of coalescence for the type-I case 
corresponds to a point on Is in figure 9. 
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FIQURE 11. Comparison of the types-I and -11 solutions for selected wall amplitudes at Ra = 15. 
The streamlines and isotherms are equally spaced. 

Heat-transfer results for steady flow are shown in figures 13-15. A plot of -Nu 
as given by (3.17) would not approach unity as Ra+O because the resultant value 
would be for the heat transferred between wavy, rather than plane, boundaries. Thus 
for a simpler graphical representation, we have plotted 

A graph of the denominator is shown in figure 13, whilst graphs of Q for modes I and 
I1 are shown in figures 14 and 15 respectively. The plots in figures 14 and 15 terminate 
at either Ra = 40 or the occurrence of periodic flow. It is of interest to note that just 
before the flow becomes oscillatory, the flow strength and heat transfer decrease. 

For values of (Ra, a) lying to the right of curves I, and 11, in figure 9, convection 
ceases to be steady and a periodic flow results. On the lower branch of 11, and the 
whole of I,, the period t, satisfies 

t, - const. IRa-Ra,l-t as Ra+Ra,, fixeda, (6.7) 

tp - const. la-a,l-f as a+a,, fixed Ra, (6.8) 
and 
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FIQURE 12. Plots of the extreme values taken by the stream function as a function of the wall 
amplitude a :  -, and -emin for type-I flows; ---------, $.,,,for type-I1 flows; ------, $,,,,, 
for the weakly convecting solution. 
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FIQURE 13. The average heat transfer per unit wavelength at Ra = 0. 

where Ra, and a, denote the critical Rayleigh number and critical amplitude for the 
onset of periodicity at fixed amplitude and Rayleigh number respectively, and where 
the limits in (6.7) and (6.8) are approached from within the unsteady region. Near 
the intersection of 11, and 11,, the determination of these curves became difficult due 
to the presence of both monotonic and oscillatory modes which decay or grow very 
slowly. Along the upper branch of 11,, the bifurcation is of Hopf type. 

The extreme of the stream-function values as a function of time are shown in figure 
16 for the three cases: (i) Ba = 25, a = 0.45, type I (note that for type I flows lq9maxl 
is not equal to lq9minl, in general), (ii) Ra = 20, a = 0.45, type I1 and (iii) Ra = 19, 
a = 0.6, type 11. The corresponding instantaneous streamlines and isotherms are 
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FIQURE 14. The Nusselt number based on the heat transfer at Ra = 0 for type-I flows. 
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15. The Nusselt number based on the heat transfer at Ra = 0 for type-I1 flows. 
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FIGURE 16. Variations of the extreme stream-function values with time: (a)  +-,,, and -+mi,, for 
Ra = 25, a = 0.45, type I ;  ( b )  +,,,,, for Ra = 20, a = 0.45, type 11; (c) +-,,, for Ra = 19, a = 0.6, 
type 11. 

shown in figures 17-19, where in each of the initial and final plots 111.1 takes on a 
maximum. The three periodic flows displayed in these figures are representative of 
all those found in the range of boundary amplitudes and Rayleigh numbers 
considered. 

I n  figure 17, case (i), the flow is characterized by essentially four phases: the 
creation of cells in the constrictions, the migration of these cells into the hollows, the 
merging of the cells and the final dissipation of the resultant cells as the next 
generation of cells grow and migrate from the constrictions. Note also that the flow 
changes its sense as the cell in the hollow oscillates, and that there is symmetry in 
each half-cycle. A similar picture of creation and annihilation of cells is seen in figure 
18, case (ii). The main differences for this type-I1 flow being the symmetry about the 
vertical centreline, the number of cells and the absence of vortex splitting. Whilst 
the symmetry and number of cells for case (iii) are similar to case (ii), the character 
of the oscillatory flow shown in figure 19 is distinct from cases ( i )  and (ii). The flow 
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FIGURE 17. Instantaneous streamlines and isotherms for Ra = 25, a = 0.45, type I, for half a cycle. 
(a) t = 1.285, ( b )  1.67, (c) 1.95, (d )  2.855, (e) 3.25, (f) 3.38, (9) 3.515, (h) 3.645. 

is an oscillatory form of the four-cell solution and there is no generation or 
annihilation of cells. 

Finally it is natural t o  try to relate the three modes of oscillatory flow discussed 
here with the oscillatory flows that have been determined for configurations with 
plane sides. Caltagirone (1975) finds a periodic flow which has a pronounced 
streamline deformation in the centre of the cells. A similar pattern was found by Frick 
& Muller (1983) in a study of the related problem of unsteady convection in a Hele-Shaw 
cell heated from below. This particular flow, termed type A by Frick & Miiller, is 
attributed to an instability of the thermal boundary layer, and is quite unlike any 
of our modes. Frick & Muller also find a second periodic flow, termed type B, which 
bears certain similarities to our case (i) but it does not involve cell creation. To our 
knowledge, type-B flow has not been observed in porous-media studies. 

A further fluctuating state observed experimentally by Cornbarnous & Le Fur 
(1969) and Caltagirone, Cloupeau & Combarnous (1971) is similar to our case (ii). 
However, the numerical work of Horne & O’Sullivan (1974) shows that, unlike ours, 
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FIUURE 18. Instantaneous Streamlines and isotherms for Ra = 20, a = 0.45, type 11, for half a cycle. 
(a) corresponds to the maximum of  ax, and consecutive plots are at equal time increments. 

the flow is not periodic. The evolution of the streamlines and isotherms was not 
displayed in the numerical work, but may be found in Combarnous & Bories (1975) 
for the experimental work. 

7. Conclusions 
An analytical study of three-dimensional convection within an undulating porous 

layer heated from below has been presented. For Ra 4 Ra, the convection is weak 
and shares any symmetries of the geometrical configuration. For Ra - Ra,, the flow 
bifurcates : when the layer is varicose, there is a supercritical bifurcation at a Rayleigh 
number which is dependent on the orientation of the resultant rolls, whilst for 
non-varicose configurations there is a smooth transition to  a strongly convecting flow. 

When the layer is varicose, there exists a purely transverse mode, the onset of which 
occurs when 

Ra = Ra, - 2 2 . 5 0 4 ~ ~ 6 ~  + O(s4). 
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FIGURE 19. Instantaneous streamlines and isotherms for Ra = 19, a = 0.6, type 11, for half a cycle. 
(a )  corresponds to the maximum of $max, and consecutive plots are at equal time increments. 

This Rayleigh number is less than those for the onset of types I and I1 longitudinal 
rolls, given by 

Ra = Rae + 7 . 4 1 4 ~ ~ 6 ~  + O(P) 
and 

Ra = Rae + 9 . 3 8 0 ~ ~ 6 ~  + O(P) 

respectively. It is expected, but we have not proved it, that  the critical Rayleigh 
numbers for oblique rolls lie between the above values for transverse and longitudinal 
rolls. Thus stable transverse rolls appear a t  the first bifurcation. At a higher Rayleigh 
number (determined by (5.13)), stable longitudinal rolls may also exist. As regards 
the heat transfer, the mean Nusselt number for the supercritical regime is given by 

Nu = - 1 +4a262Nuv-f€2k~(A1~+A2L)+0(€2, P), 

where %, x -0.214 and A,, AT are the amplitudes of the longitudinal and 
transverse rolls. It is clear from figure 8 that  the transverse mode transports more 
heat than the longitudinal mode. 

For non-varicose configurations, there is a smooth transition to strong convection 
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in the form of stable longitudinal rolls, and when the Rayleigh number exceeds 
Rac + 8 [(357)4k2 c2 -@2Rac],  there is also a stable mixed-mode solution. The mean 
Nusselt number is given by 

c. p 

Nu = - 1 -+I$ kt(A2, +.A$) + o($) ; 
the mode which maximizes the heat transfer is dependent upon the Rayleigh number 
and the amount of boundary detuning. 

It should be noted that, although the results have been presented for boundary 
wavenumbers - k,, the perturbation schemes may also be employed for more general 
wavenumbers. For example, when k is not a rational multiple of k,, the double 
expansions of $5 may be used. The subharmonic and superharmonic cases generally 
require more subtle treatment (see Pal & Kelly 1978). 

A numerical study of two-dimensional convection has also been presented for the 
varicose case only. Six types of flow have been highlighted. The first, for low Rayleigh 
numbers, consists of four cells per wavelength and corresponds to the steady 
quasi-conduction solution (3.16). The second and third are also steady flows and 
correspond to the types-I and -11 solutions of $5.1 respectively. The final three are 
periodic and are typified by the cases (i), (ii) and (iii) presented in $6. Cases (i) and 
(ii) are examples of unsteady flows with the types-I and -11 symmetries respectively. 
Case (iii) is an oscillatory form of quasi-conduction solution and has type-I1 
symmetry. The boundary between the steady and unsteady flows has been determined 
in the parametric space of Rayleigh number Ra and boundary amplitude a. 

Finally it is of interest to determine the thickness of a rock stratum so that the 
convective instability at  Ra, = n2 may occur. For example, if we take a moderately 
permeable rock,such as sandstone, saturated with pure water, we have K = m2, 
K = m2 s-l, p = 0.9923 x lo3 kg mP3, ,u = 0.654 x lop3 kg rn-l s-l, where the 
properties have been evaluated at 40 "C. Thus assuming a geothermal gradient 
of 0.025 "C m-l, the stratum must be about 16 m thick for the onset of Lapwood 
convection. 

The authors wish to express their gratitude to Professor Philip Drazin for many 
stimulating discussions on this problem and for comments on the draft of this paper, 
and to Dr Ian Walton for useful discussions on some aspects of the work. D. A. S. R. 
also wishes to acknowledge SERC support. 

REFERENCES 

ARAKAWA, A. 1966 Computational design of long-term numerical integration of the equations 

BECK, J. L. 1972 Convection in a box of porous material saturated with fluid. Phys. Fluids 15, 

CALTAQIRONE, J.  P. 1975 Thermoconvective instabilities in a horizontal porous layer. J .  Fluid 

of fluid motion. I. Two-dimensional incompressible flow. J .  Comp. Phys. 1, 119-143. 

1377-1383. 

Mech. 72, 269-287. 

dans une couche poreuse horizontale. C. R .  Amd.  Sci. Paris B 273, 833-836. 
COMBARNOUS, M. A.  & BORIES, S. A. 1975 Hydrothermal convection in a saturated porous 

medium. Adv. Hydr. 10, 231-307. 
COMBARNOUS, M. A. & LE FUR, B. 1969 Transfer de chaleur par convection naturelle dans une 

couche poreuse horizontale. C .  R. A d .  Sci. Paris B 269, 1009-1012. 
EAGLES, P. M. 1980 A BBnard convection problem with a perturbed lower wall. Proc. R .  SOC. Lond. 

A 371. 359-379. 

CALTAOIRONE, J. P., CLOUPEAU, M. & COMBARNOUS, M. A. 1971 Convection naturelle flUCtuante 



530 D. A .  S.  Rees and D. S. Riley 

ELDER, J. W. 1967 Steady free convection in a porous medium heated from below. J. Fluid Mech. 
27, 29-48. 

FRICK, H. & MULLER, U. 1983 Oscillatory Hele-Shaw convection. J. Fluid Mech. 126, 521-532. 
HORNE, R. N. 1979 Three-dimensional natural convection in a confined porous medium heated 

from below. J. Fluid Mech. 92, 751-766. 
HORNE, R. N. & O'SULLIVAN, M. J. 1974 Oscillatory convection in a porous medium heated from 

below. J. Fluid Mech. 66, 339-352. 
HORNE, R. N. & O'SULLIVAN, M. J. 1978 Origin of oscillatory convection in a porous medium 

heated from below. Phys. Fluids 21, 1260-1264. 
KELLY, R. E. & PAL, D. 1976 Thermal convection between non-uniformly heated horizontal 

surfaces. In Proc. 1976 H P ~  Transfer and Fluid Mech. Inst. pp. 1-17. Stanford University Press. 
KELLY, R. E. & PAL, D. 1978 Thermal convection with spatially periodic boundary conditions: 

resonant wavelength excitation. J. Fluid Mech. 86,433456. 
LAPWOOD, E. R. 1948 Convection of a fluid in a porous medium. Proc. Camb. Phil. Soc. 44,508-521. 
PAL, D. & KELLY, R. E. 1978 Thermal convection with spatially periodic non-uniform heating: 

non-resonant wavelength excitation. In Proc. 6th Intl Heat Trans. Cmf. Toronto, Vol. 2. 
PAL, D. &KELLY, R.  E. 1979 Three-dimensional thermal convection produced by two-dimensional 

thermal forcing. ASME Paper 79-HT-109. 
PALM, E., WEBER, J. E. t KVERNVOLD, 0. 1972 On steady convection in a porous medium. J. 

Fluid Mech. 54, 153-161. 
RIAHI, N. 1983 Nonlinear convection in a porous layer with finite conducting boundaries. J. Fluid 

Mech. 129, 153-171. 
ROACHE, P. J. 1972 Computational Fluid Dynamics. Hermosa. 
SCHUBERT, G .  & STRAUS, J. M. 1979 Three-dimensional and multicellular steady and unsteady 

convection in fluid-saturated porous media at high Rayleigh numbers. J. Fluid Mech. 94,2548.  
SCHUBERT, G .  & STRAUS, J. M. 1982 Transitions in time-dependent thermal convection in 

fluid-saturated porous media. J. Fluid Mech. 121, 301-313. 
STRAUS, J. M. 1974 Large amplitude convection in porous media. J. FZuid Mech. 64, 5143.  
TAVANTZIS, J., REISS, E. L. & MATKOWSKY, B. J. 1978 On the smooth transition to convection. 

SIAM J .  Appl.  M a t h  34, 322-337. 
VOZOVOI, L. P. & NEPOMNYASCHII, A. A. 1974 Convection in a horizontal layer in the presence 

of spatial modulation of temperature at the boundaries. Gidrodinamika 8 ,  105-117. 
WALTON, I. C. 1982a The effects of slow spatial variations on BBnard convection. Q.  J. Mech. Appl.  

Maths 35 ,  3348.  
WALTON, I. C. 19823 On the onset of Rayleigh-BBnard convection in a fluid layer of slowly 

increasing depth. Stud. Appl.  Maths 67, 199-216. 
WALTON, I. C. 1983 The onset of cellular convection in a shallow two-dimensional container of 

Auid heated non-uniformly from below. J. Fluid Mech. 131, 455-470. 
WATSON, A. & POOTS, G. 1971 The effect of sinusoidal protrusions on laminar free convection 

between vertical walls. J. Fluid Mech. 49, 33-48. 


